Decrease in susceptibility toward induction of apoptosis and alteration in G1 checkpoint function as determinants of resistance of human lung cancer cells against the antisignaling drug UCN-01 (7-Hydroxystaurosporine).

نویسندگان

  • K Sugiyama
  • T Akiyama
  • M Shimizu
  • T Tamaoki
  • C Courage
  • A Gescher
  • S Akinaga
چکیده

7-Hydroxystaurosporine (UCN-01) is a protein kinase inhibitor that is under development as an anticancer agent in the United States and Japan. Long-term exposure of human A549 non-small cell lung cancer cells to UCN-01 furnished cells (A549/UCN) with acquired resistance against UCN-01. In this study, the sensitivity of these cells toward the growth-arresting properties of certain conventional cytotoxic agents was explored. Cells were not cross-resistant against adriamycin, Taxol, staurosporine, and UCN-02, but they displayed 14- and 4.4-fold resistance against cisplatin and mitomycin C, respectively. Previous studies on the mechanism(s) of action of UCN-01 suggest that induction of apoptosis and G1 phase accumulation are important for its anticancer activity; therefore, we compared induction of apoptosis and cell cycle distribution caused by UCN-01 in wild-type A549 and A549/UCN cells using flow cytometry. UCN-01 (0.4 microM) induced apoptosis (62% terminal deoxynucleotidyl transferase-mediated nick end labeling-positive cells) in A549 cells, but not in A549/UCN cells. The percentages of cells that accumulated in G1 when exposed to UCN-01 (0.4 microM) were 22% in A549 cells and 67% in A549/UCN cells. These results suggest that acquired resistance of cancer cells against UCN-01 is characterized by attenuation of apoptosis induction associated with reinforcement of the G1 checkpoint and that apoptosis regulation is drastically altered in A549/UCN cells as compared with A549 cells. Cyclin-dependent kinase (CDK) inhibitor proteins p21 and p27 in A549/UCN cells were up-regulated, which was accompanied by overexpression of G1 cyclins D1 and E, but UCN-01 hardly affected levels of these proteins. In contrast, cyclin A, cyclin B1, retinoblastoma, and CDK2 proteins were apparently down-regulated, without changes in CDK4/6. UCN-01 hardly affected the expression level of cyclin B1 and induced dephosphorylation of retinoblastoma in both cell types. UCN-01 induced down-regulation of cyclin A level and CDK2 activity accompanied with its dephosphorylation in A549/UCN cells, but not in A549 cells. The antiapoptotic protein bcl-2 was apparently up-regulated in A549/UCN cells, however, bcl-xL, another antiapoptotic protein, was down-regulated, without changes in bak and bax. Taken together, these results are consistent with the notion that induction of apoptosis and block of cell cycle in G1 are important determinants of the sensitivity of cancer cells to UCN-01 and suggest that inhibition of CDK2 activity accompanied by its dephosphorylation and decrease of expression level of cyclin A might play an important role in the G1 phase accumulation induced by UCN-01.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01.

Genotoxic stress such as ionizing radiation halts entry into mitosis by activation of the G(2) DNA damage checkpoint. The CHK1 inhibitor 7-hydroxystaurosporine (UCN-01) can bypass the checkpoint and induce unscheduled mitosis in irradiated cells. Precisely, how cells behave following checkpoint abrogation remains to be defined. In this study, we tracked the fates of individual cells after check...

متن کامل

Therapeutic Discovery Determinants of Mitotic Catastrophe on Abrogation of the G2 DNA Damage Checkpoint by UCN-01

Genotoxic stress such as ionizing radiation halts entry into mitosis by activation of the G2 DNA damage checkpoint. The CHK1 inhibitor 7-hydroxystaurosporine (UCN-01) can bypass the checkpoint and induce unscheduled mitosis in irradiated cells. Precisely, how cells behave following checkpoint abrogation remains to be defined. In this study, we tracked the fates of individual cells after checkpo...

متن کامل

RB status as a determinant of response to UCN-01 in non-small cell lung carcinoma.

7-Hydroxystaurosporine (UCN-01), a protein kinase inhibitor in clinical development, demonstrates potent antineoplastic activity. To determine whether specific genetic abnormalities would modulate the response to UCN-01, a model of human non-small cell lung carcinoma (NSCLC) cell lines with differential abnormalities of p16CDKN2, RB, and p53 was used for these studies. Cell growth was measured ...

متن کامل

S-Phase arrest by nucleoside analogues and abrogation of survival without cell cycle progression by 7-hydroxystaurosporine.

The mechanisms of resistance to nucleoside analogues established in preclinical models are rarely found in primary tumors resistant to therapy with these agents. We tested the hypothesis that cells sense sublethal incorporation of analogues into DNA during replication and react by arresting further DNA synthesis and cell cycle progression. After removal of drug, cells may be able to repair dama...

متن کامل

Modulation of clinical drug resistance in a B cell lymphoma patient by the protein kinase inhibitor 7-hydroxystaurosporine: presentation of a novel therapeutic paradigm.

Emerging evidence suggests that apoptosis is an important mechanism of tumor cell death from antineoplastic therapy. 7-hydroxystaurosporine (UCN-01) is a novel protein kinase inhibitor that increases chemotherapy-induced apoptosis in vitro and is in early phases of clinical development. In this report, we present a 68-year-old patient with chemotherapy-resistant lymphoma treated with UCN-01 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 59 17  شماره 

صفحات  -

تاریخ انتشار 1999